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LETTER TO THE EDITOR 

The statistics of light scattered by a random phase screen 

E Jakeman and P N Pusey 
Royal Radar Establishment, Malvern, Worcestershire, UK 

Received 14 May 1973 

Abstract. We report some preliminary results of an investigation of the statistical 
properties of light scattered by a deep random phase screen, with particular reference 
to the nongaussian regime when the dimensions of the illuminated area are of the 
same order of magnitude as the phase correlation length. 

In the majority of light scattering experiments to date the spatial extent of the refractive 
index inhomogeneities giving rise to the scattering has been very much smaller than 
the region of sample illuminated by the laser light source. The instantaneous electric 
field at  the detector is then the sum of very many randomly phased components, and 
therefore the single interval statistics of this field closely approximates gaussian (see 
for example Jakeman et al 1968). When the number of independent scattering centres 
is small, however, marked departures from gaussian statistics occur (see for example 
Bourke et a2 1970, Schaefer and Pusey 1972, Bluemel et a1 1972). Such departures are 
characteristic of the sample and of the optical arrangement so that the statistics in 
this case carry more information than in the gaussian limit. 

In this letter we investigate a light scattering system in many examples of which the 
nongaussian regime is accessible for experimental investigation : namely the deep, 
random phase screen. Such a system simply retards the phase of an incident electro- 
magnetic field by a randomly varying, position-dependent amount typically equivalent 
to many wavelengths path difference. Familiar phenomena caused in this way are the 
twinkling of starlight and the swimming pool effect (Taylor 1972). Examples of deep 
phase screens of considerable current interest are moving diffuse surfaces such as 
ground glass (see for example Estes et al 1971) and the dynamic scattering mode 
exhibited by thin layers of nematic liquid crystals (Deutsch and Keating 1969). A good 
deal of literature exists on the diffuse surface problem particularly, but as far as we are 
aware no theoretical analysis of the statistics of the scattered light has been carried 
out for the nongaussian case. We shall outline here two approaches to this problem 
based on the assumption of joint-gaussian statistics for the phase +(r) of the light 
emerging from a point r of the planar source region (figure 1). We shall assume the 
scatterer to be illuminated by a focused down laser beam of width WO. 

Figure 1. Schematic diagram of optical arrangement. 
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Following first a continuum approach (see for example Mercier 1962) let the posi- 
tive frequency part of the electric field emerging from the scattering region be given by 

E+(r ;  t )  = Eo exp{i(4(r)-wt)-r2/WO2). (1) 
With the help of the Helmholtz formula, the intensity in front of the phase screen 
may be written down in a far-field approximation as follows: 

(Z (B)>  = (&+(e;  t)d-(B; t ) )  = IEo12J^ d2r‘d2r“ {expi(+(r’-r”)-+(r’))) 
+ m  

- m  

x exp[iklr”l sin Bcos ~-{(r’-r”)2+r’Z}/W02] 

where 6 is defined in figure 1, 7 is the angle between r“ and the radius vector V ,  and k 
is the wavevector of the light. The average in the integrand may be evaluated using the 
joint-gaussian hypothesis for 4:  

where 3T is the mean-square phase deviation and p(r) is the normalized phase auto- 
correlation function. After integration we obtain the result 

- m 

( I ( @ ) >  = 2 Wo2/Eo12 1 rdrJo(kr sinB)exp{-+2(1 -p(r))-r2/2WO2}. (3) 
0 

A formula for the second moment of the intensity fluctuation distribution, 

+ W  

( Z2(B)>  = T WO2 IEo l 4  J^ d2r’d2r“d2r”’ exp(2ikr“ sin e cos ’1 -(r’2 + r”2 + r“’2)/ WO2) 
- - C O  

- 
x exp{ - 42(2 -p(r”+ r”’) -p(r” - 7’”) -p(r’ + r”) - p ( r ’  - I .”)  

+p(r’ + r”’) +p( r ’  - r’?)}, (4) 

may be derived similarly. We have evaluated equations (3) and (4) in the limit 
9 1 by a method of steepest descents, assuming only that the function p has a 

curvature 
2 % I r z o  = -2 ( 5 )  

at the origin where E < Wo(p)1’2 may be interpreted as a characteristic phase correla- 
tion length (Marathay et al 1970). The formulae obtained in this way, namely 

should provide an adequate description of the low order statistics of light scattered 
from a deep random phase screen. 
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In the limit 5 < WO the second moment (7) assumes the gaussian value of two as 
expected but as WO is reduced the presence of the large p f a c t o r  leads to  a prediction 
of values in excess of two, particularly at  large angles where the effect of the exponential 
term may become significant. The size of this factor is closely related to the angular 
distribution of intensity (6)  so that its importance can be estimated without recourse 
to small beamwidths. 

Experiments in which light was scattered from thin layers of nematic liquid crystal 
undergoing electrohydrodynamic turbulence (Jakeman and Pusey 1973) have confirmed 
both the angle and beamwidth dependencies predicted by (6) and (7). The values of 
,#? and 5 were estimated using these formulae to be of the order of 36 and 2 pm 
respectively for this system so that the nongaussian regime is easily accessible by 
focusing down the incident laser beam. Under such conditions a ‘lighthouse’ effect 
can be observed (sometimes with the naked eye) in which the incident radiation is 
scattered into a few well defined directions which fluctuate randomly with time. 

Extension of the continuum approach to higher moments becomes progressively 
more difficult. However, a ‘micro-area’ model used by Enloe (1967) and more 
recently by Estes et a1 (1971) enables more general results to be obtained within the 
framework of the above approximations. We imagine the illuminated area to be 
made up of N regions R giving statistically independent contributions to the far 
field. This is equivalent to  neglecting terms like exp(-p)  in  the earlier method. 
Thus we may write 

- 

N 

b+(B;t) = 2 aj(B; t)exp(i#J 8) 
j = l  

where the t,bI are statistically independent random phases, whilst the real diffraction 
factors are given by 

exp{i(k/r-r’I sin 6 cos ~ + $ ~ ( r ) - + ~ ( r ’ ) ) ) d ~ r d ~ r ’  (9) 

where 7 is the angle between r - r’ and the radius vector to the detector. Expression (8) 
describes a finite random walk in the complex b+ plane with variable step length. This 
problem was analysed by several authors including Lord Rayleigh (1919) and the 
relevant distribution is quoted by Watson (1944). The results have been applied recently 
in the special case of constant step length by Pusey et al(1973) to evaluate the properties 
of light scattered from a finite number of independent particles. The generating func- 
tion of the distribution of intensity for a fixed set of diffraction factors is given by 

1, s, a,2(e; t )  = pol2 

(exp( -hZ) )  = Y2(1; 1,1,1, . . . 1; -aI2h,  - u ~ ~ / \ .  . . -a,2h) (10) 

where Y, is a confluent hypergeometric function of N variables. Assuming that the 
fluctuations of all the aj can be described by a single distribution function, (10) leads 
to the following expressions for the first few moments : 

( I )  = N ( a 2 )  (1 l a )  

( 1 2 )  = N ( a 4 ) + 2 N ( N - - l ) ( a 2 ) 2  (1 1b) 
(Z3) = N ( u ‘ )  + 9 N ( N -  1) (U’ ) (a4) + 6N(N- 1)(N-2)  ( u ~ ) ~  ( I  IC) 

and higher moments can be generated without difficulty. The moments of a2 can 
be evaluated from (9) using the joint-gaussian hypothesis for the statistics of 4?(r) and 
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an approximation similar to  (5 ) ,  taking advantage of the fact that R is characterized 
by the dimension 5. A more intuitive but mathematically equivalent technique is to 
assume that Cj(r) is coherent and varies linearly with distance within R, the gradient 
being gaussian distributed. In either case it is convenient to replace the integrals over 
R in (9) by infinite integrals over the gaussian weighting function exp( - r 2 / t 2 ) .  We 
then obtain 

exp ( - R 2 f 2  sin2 6) 
(12) 

2(d2 I E O  1/212" 
np 4p 

( a 2 * )  = 

Substitution of (12) into ( l la )  and ( l lb)  immediately recovers the results (6) and (7) 
when N is interpreted as the number of phase coherence areas per illuminated area, 

It is not difficult to show from (10) and (12) that the higher normalized moments 
dr)  = {Zr)/{I)r may be expressed entirely in terms of N and d2).  This 'factorization' 
property is illustrated in figure 2 by the full curves. We have taken N = 16 to make 

Wo2It2. 

16r 

1 I I 1 I I I I I I 
0 2 4 b a IO 

11"2{1-( I" 

Figure 2. Higher-order statistical properties: comparison of experiment with theory. 
Full curve, phase fluctuations only; broken curve, phase and amplitude fluctuations. 

contact with experiment but the curves do not change significantly, for fixed d2), as 
N -+ CO. Also shown in figure 2 are some experimental results for the liquid crystal 
system referred to earlier (Jakeman and Pusey 1973). The discrepancy between 
experiment and theory which is evident at high values of d2), particularly in the case of 
the high moments, is probably due to amplitude modulation associated with depolari- 
zation of the incident light. This may be taken into account in a simple way by 
multiplying equation (9) by an attenuation factor exp(-u) which is uniform over 
each micro-area. The assumption of gaussian statistics for U then leads to an additional 
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‘log-normal’ factor exp{n(n- l )7/2)  on the right-hand side of (12). The broken curves 
in figure 2 are obtained by taking exp(o2) = 2 and show good agreement with the experi- 
mental data. 

It is clear from our preliminary results that nongaussian statistics can be a valuable 
source of information in light scattering systems such as the deep random phase screen 
for which an adequate theoretical description can be found. In addition to the 
examples we have already quoted, the phase screen model described in this letter 
should apply to a thin film of pure fluid or binary liquid mixture sufficiently close to 
the critical point for the range of correlation of the fluctuations to be comparable with 
the size of the illuminated region, provided that the associated refractive index changes 
are large enough. In this connection both the time dependence of the nongaussian 
intensity fluctuations and the spatial cross-correlation functions obtained by multiple- 
detector experiments (Cantrell 1968, Swift 1973) are plainly of great interest. The weak 
phase-screen situation which may obtain for smaller refractive index changes in 
critical systems remains to be investigated. 
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